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Overview

1. Learning in Games



Learning in Games

How do people get to play equilibrium?
Main question of interest in ‘learning in games’ (7 games with learning)
Goals
Provide foundations for existing equilibrium concepts.
Capture lab behaviour.
Predict adjustment dynamics transitioning to new equilibrium.
(akin to ‘impulse response’ in macro; uncommon but definitely worth
investigating)
Select equilibria.
Algorithm to solve for equilibria.
Explain persistence of heuristics/nonequilibrium behaviour.
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Overview

2. Approachability
— Multi-Utility Representation
— Approachability
— Approachability with Time-Varying Payoffs
— Application: Picking Experts
— Universal Consistency



Approachability

Setup:
Two players face repeated game. m-dimensional goal/multi-utility representation.

Goal of each player: control average vector of attributes s.t. approaches/excludes
(keeps away) target set S ¢ R™.

Brief detour: rationalising multi-utility.
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Overview

2. Approachability
— Multi-Utility Representation



Multi-Utility Representation

=C X2: preorder (reflexive, transitive).

Want to allow for incompleteness.
x and y are incomparable if ~(x >~ y or y = x). Ow, they are comparable.
E.g., choice by unanimity, incomparable attributes.
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Multi-Utility Representation

=C X2: preorder (reflexive, transitive).

Want to allow for incompleteness.
x and y are incomparable if ~(x >~ y or y = x). Ow, they are comparable.
E.g., choice by unanimity, incomparable attributes.

Definition

For any binary relation = on X with symmetric part ~, for any x € X, x's equivalence
class is [x] := {y € X|x ~ y} and the set of equivalence classes X = {Ix],x € X}.
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Multi-Utility Representation

=C X2: preorder (reflexive, transitive).

Want to allow for incompleteness.
x and y are incomparable if ~(x >~ y or y = x). Ow, they are comparable.
E.g., choice by unanimity, incomparable attributes.

{ Definition

For any binary relation = on X with symmetric part ~, for any x € X, x's equivalence
class is [x] := {y € X|x ~ y} and the set of equivalence classes X = {Ix],x € X}.

Remark

For any preorder =~ on X, let = on X : x,y € X : [XI=[y] if x == y. Then, & is partial order.
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Multi-Utility Representation

=C X2 preorder (reflexive, transitive).

Want to allow for incompleteness.
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=C X2 preorder (reflexive, transitive).

Want to allow for incompleteness.
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Multi-Utility Representation

=C X2 preorder (reflexive, transitive).

Want to allow for incompleteness.
x and y are incomparable if ~(x >~ y or y = x). Ow, they are comparable.
E.g., choice by unanimity, incomparable attributes.

Set of all linear extensions of = on X: £(X, Z).

Szpilrajn's Theorem: any partial order can be extended to a linear order.
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Multi-Utility Representation

=C X2 preorder (reflexive, transitive).

Want to allow for incompleteness.
x and y are incomparable if ~(x >~ y or y = x). Ow, they are comparable.
E.g., choice by unanimity, incomparable attributes.

Set of all linear extensions of = on X: £(X, Z).

Szpilrajn's Theorem: any partial order can be extended to a linear order.
Remark 1: = £(X, %) 70.

S o A
Remark 2: - mzeﬁ(X,i)Z'
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Multi-Utility Representation

=C X2 preorder (reflexive, transitive).

Want to allow for incompleteness.
x and y are incomparable if ~(x >~ y or y = x). Ow, they are comparable.
E.g., choice by unanimity, incomparable attributes.

Set of all linear extensions of = on X: £(X, Z).

Szpilrajn's Theorem: any partial order can be extended to a linear order.
Remark 1: = £(X, %) 70.
Remark 2: = = méeﬁ(fci)é'

Order dimension: dim(X, =) := min{k € N| >;€ £(X,5),i=1,...k: = = ﬂfi1 >
dim(X, =): min number of linear extensions of = whose intersection yields =.
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Multi-Utility Representation

=C X2 preorder (reflexive, transitive).

Want to allow for incompleteness.
x and y are incomparable if ~(x >~ y or y = x). Ow, they are comparable.
E.g., choice by unanimity, incomparable attributes.

Set of all linear extensions of = on X: £(X, Z).

Szpilrajn's Theorem: any partial order can be extended to a linear order.
Remark 1: = £(X, %) 70.

S o A
Remark 2: - mzeﬁ(X,i)Z'

Order dimension: dim(X, =) := mintk € N| > £(X,5),i =1, k: ==k, >}
dim(X, =): min number of linear extensions of = whose intersection yields =.
Examples:
= is linear order on X iff dim(X, =) = 1.
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Multi-Utility Representation

=C X2 preorder (reflexive, transitive).

Want to allow for incompleteness.
x and y are incomparable if ~(x >~ y or y = x). Ow, they are comparable.
E.g., choice by unanimity, incomparable attributes.

Set of all linear extensions of = on X: £(X, Z).

Szpilrajn's Theorem: any partial order can be extended to a linear order.
Remark 1: = £(X, %) 70.
Remark 2: = = méeﬁ(fci)é'

Order dimension: dim(X, =) := mintk € N| > £(X,5),i =1, k: ==k, >}
dim(X, =): min number of linear extensions of = whose intersection yields =.

Examples:

= is linear order on X iff dim(X, =) = 1.

If no distinct x, y are comparable (= is antichain) and dim(X, =) = 2 since
Z=>n<.
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Multi-Utility Representation

=C X2 preorder (reflexive, transitive).

Want to allow for incompleteness.
x and y are incomparable if ~(x >~ y or y = x). Ow, they are comparable.
E.g., choice by unanimity, incomparable attributes.

Set of all linear extensions of = on X: £(X, Z).

Szpilrajn's Theorem: any partial order can be extended to a linear order.
Remark 1: = £(X, %) 70.
Remark 2: = = méeﬁ(fci)é'

Order dimension: dim(X, =) := mintk € N| > £(X,5),i =1, k: ==k, >}
dim(X, =): min number of linear extensions of = whose intersection yields =.

Examples:
= is linear order on X iff dim(X, =) = 1.
If no distinct x, y are comparable (= is antichain) and dim(X, =) = 2 since
f=>n<

If X = 2% and |A| = oo, then dim(X, €) = cc.
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Multi-Utility Representation

Definition

=C X? admits a multi-utility representation u : X — R™ with m € Niff vx,y € X, x =
y = ul) > uy).
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Multi-Utility Representation

( Definition

=C X? admits a multi-utility representation u : X — R™ with m € Niff vx,y € X, x =
y = ul) > uy).

Proposition 1 (Ok 2002 JET)

Let - be preorder on X.
(1) = admits a multi-utility representation u only if dim(X, z) < co.
(2) If X countable, = admits a multi-utility representation u if and only if dim(X, =) < co.

Gongalves (UCL) Approachability, Calibration, and Adaptive Algorithms



Multi-Utility Representation

( Definition

=C X? admits a multi-utility representation u : X — R™ with m € Niff vx,y € X, x =
y = ul) > uy).

Proposition 1 (Ok 2002 JET)

Let - be preorder on X.
(1) = admits a multi-utility representation u only if dim(X, z) < co.
(2) If X countable, = admits a multi-utility representation u if and only if dim(X, =) < co.

Alternative (social) interpretation: 3U c R suchthatx = y <= u(x) > u(y)vu € U.
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Multi-Utility Representation

{ Definition
=C X? admits a multi-utility representation u : X — R™ with m € Niff vx,y € X, x =
y = ul) > uy).

Proposition 1 (Ok 2002 JET)

Let - be preorder on X.
(1) = admits a multi-utility representation u only if dim(X, z) < co.
(2) If X countable, = admits a multi-utility representation u if and only if dim(X, =) < co.

Alternative (social) interpretation: 3U c R suchthatx = y <= u(x) > u(y)vu € U.

Proof Idea

Take X finite. Let ux(y) = Tyxy- u(y) = (ux(¥))yex-

Letxzy @VzeX:(Uz(x)=0) = @Z2zZx) = (2Zy) < (uy)=0)
B)vzeX: (Uz(y)=1) <= (Y22 = (X2 <= (ux)=1).

@+ () = ul) = uy).
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Multi-Utility Representation

{ Definition

=C X? admits a multi-utility representation u : X — R™ with m € Niff vx,y € X, x =
y = ul) > uy).

Proposition 1 (Ok 2002 JET)

Let - be preorder on X.
(1) = admits multi-utility representation u only if dim(X, =) < cc.
(2) If X countable, = admits a multi-utility representation u if and only if dim(X, =) < co.

[ Proposition 2 (Ok 2002 JET)

(@) Xq = ><,-k:1X,-, with X; be metric space and ; be preorders on X;, i = 0,1, ..., k;

(b) Each X;iss.t. {y; | y; =; x;} is open for every x; € X;and i = 1,..., k; and

(©) Xmoy < X ZiyiVi=1.,k

If Xo admits a countable = g-dense subset, then =g admits a multi-utility representation
u which is continuous in the product topology.
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Overview

2. Approachability

— Approachability



Approachability

Setup:
Two players face repeated game. m-dimensional goal/multi-utility representation.

Goal of each player: control average vector of attributes s.t. approaches/excludes
(keeps away) target set S ¢ R™.

Back to approachability... Blackwell (1956). Good reference: Maschler, Solan, Zamir
(2013 Book, Ch. 14).

Actions: A;; Stage-Game Payoffs: u; : Ay x A, — R™ uy = —uq; (endowed with
dix.y) = lIx = yll2);
Histories: H; := A\, H := U;H;; Strategies: 6, H — A(A); A € A(A).
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Approachability

Setup:
Two players face repeated game. m-dimensional goal/multi-utility representation.

Goal of each player: control average vector of attributes s.t. approaches/excludes
(keeps away) target set S ¢ R™.

Back to approachability... Blackwell (1956). Good reference: Maschler, Solan, Zamir
(2013 Book, Ch. 14).

Actions: A;; Stage-Game Payoffs: u; : Ay x A, — R™ uy = —uq; (endowed with
dix.y) = lIx = yll2);

Histories: H; := A\, H := U;H;; Strategies: 6, H — A(A); A € A(A).

Expected Payoffs: u;(A,A-) = >, >, Mi(a)ui(a,a-)r-i(@-;) € R™.
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Approachability

Setup:
Two players face repeated game. m-dimensional goal/multi-utility representation.

Goal of each player: control average vector of attributes s.t. approaches/excludes
(keeps away) target set S ¢ R™.

Back to approachability... Blackwell (1956). Good reference: Maschler, Solan, Zamir
(2013 Book, Ch. 14).

Actions: A;; Stage-Game Payoffs: u; : Ay x A, — R™ uy = —uq; (endowed with
dix.y) = Ix = yll2);

Histories: H; := A\, H := U;H;; Strategies: 6, H — A(A); A € A(A).

Expected Payoffs: u;(A,A-) = >, >, Mi(a)ui(a,a-)r-i(@-;) € R™.

Feasible Expected Payoffs for A;: U;(},;) := {uj(A, A-;), A-; € A(A_;)} CR™.
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Approachability

Setup:
Two players face repeated game. m-dimensional goal/multi-utility representation.

Goal of each player: control average vector of attributes s.t. approaches/excludes
(keeps away) target set S ¢ R™.

Back to approachability... Blackwell (1956). Good reference: Maschler, Solan, Zamir
(2013 Book, Ch. 14).

Actions: A;; Stage-Game Payoffs: u; : Ay x A, — R™ uy = —uq; (endowed with
dix.y) = Ix = yll2);

Histories: H; := A\, H := U;H;; Strategies: 6, H — A(A); A € A(A).

Expected Payoffs: u;(A,A-) = >, >, Mi(a)ui(a,a-)r-i(@-;) € R™.

Feasible Expected Payoffs for A;: U(\) = {u;(Mi, A=), A—j € A(A_))} CR™.

Average Payoff: U;; = ; ZH u;(ay).

Feasible Avg Payoffs: co(u;) := co({u;(a),a € A}) C R™.
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Approachability

{ Definition
CCR"is
approachable by player i if 3o; s.t. Ve > 0, 3T : Vo_;, P°(d(T;j;,C) <&, Vt > T) >1- ¢ in
this case, o; approaches C for player i; and
excludable by player i if 38 s.t. set C§ := {x | d(x,C) > 8} is approachable by player j; if
strategy o; approaches C%, then it excludes C for player /.
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Approachability

{ Definition
CCR"is
approachable by player i if 3o; s.t. Ve > 0, 3T : Vo_;, P°(d(T;j;,C) <&, Vt > T) >1- ¢ in
this case, o; approaches C for player i; and
excludable by player i if 38 s.t. set C§ := {x | d(x,C) > 8} is approachable by player j; if
strategy o; approaches C%, then it excludes C for player /.

Approachable by a player if can guarantee that average payoff approaches the set wp1
uniformly over opponent’s strategies: P®(lim;_, oo d(Tt, C) = 0) = 1.
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Approachability

{ Definition

CCR"is

approachable by player i if 3o; s.t. Ve > 0, 3T : Vo_;, P°(d(T;j;,C) <&, Vt > T) >1- ¢ in
this case, o; approaches C for player i; and

excludable by player i if 38 s.t. set C§ := {x | d(x,C) > 8} is approachable by player j; if
strategy o; approaches C%, then it excludes C for player /.

Approachable by a player if can guarantee that average payoff approaches the set wp1
uniformly over opponent’s strategies: P®(lim;_, oo d(Tt, C) = 0) = 1.

{ Remark

(1) If o; approaches (resp. excludes) C, then it approachers (resp. excludes) the clo-
sure of C.

(2) C cannot be approachable by one player and excludable by the other.

(8) If C C D and C is approachable by a player, then D is approachable by the same
player.
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B-Sets

Definition
LetD CR™ x,y € R™.
Normal cone of D at y is given by Np(y) :={n € R"In- (z-y) < 0,vz € D}.

Projection of x € R™ to D is given by Pp(x) := arg minyep Iy = |-
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B-Sets

Definition
LetD CR™ x,y € R™.
Normal cone of D at y is given by Np(y) :={n € R"In- (z-y) < 0,vz € D}.

Projection of x € R™ to D is given by Pp(x) := arg minyep Iy = |-

Remark

(1) x—y) € Npy) = y € Pp(x).
(2) If Dis convex, then (x — y) € Np(y) <= y € Pp(x).
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B-Sets

Definition
LetD CR™ x,y € R™.
Normal cone of D at y is given by Np(y) :={n € R"In- (z-y) < 0,vz € D}.

Projection of x € R™ to D is given by Pp(x) := arg minyep Iy = |-

Remark

(1) x—y) € Npy) = y € Pp(x).
(2) If Dis convex, then (x — y) € Np(y) <= y € Pp(x).

{ Definition

Cis B-set for player i if, ¥x € co(u;)\ C, 3y € Pc(x) and &; € A(A) sit. (x —y) € Nyp,) ),
e, YA, (Ui A=) —y) - (x—y) < 0.
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Approachability

Definition

Cis B-set for player i if, ¥x € co(u;) \ C, 3y € Pc(x) and A; € A(A)) sit. (x—y) € Ny p,) ),
e, VA, (Ui A=) = y) - (x =y) < 0.
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Approachability

{ Definition

Cis B-set for player i if, x € co(uj) \ C, 3y € Pc(x) and &; € A(A)) st. (x = y) € Nyay W),
e, YA, (Ui A=) =y) - (x = y) < 0.

{ Theorem

If C is closed B-set for player i for every t, then it is approachable by player i.
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Convergence of Non-negative Almost Supermartingales
We'll need this:

Theorem (Robbins and Siegmund 1971)

Let (F) be filtration and (V;);>o be nonnegative, adapted. Suppose there are nonnega-
tive, Fi-adapted processes (&), (Bt), (¢) s.t.

EVia | Al < (1 +E)V: — & + By, t>0,

with > & < oo and > 5 Br< oo as.

oo
Then, V; converges a.s. to a finite, nonnegative limit Voo, and » " §; < oo as.
=0

Going beyond Doob's MCT: convergence for non-negative almost supermartingales.
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Convergence of Non-negative Almost Supermartingales

{ Theorem (Robbins and Siegmund 1971)
Let (F3) be filtration and (V¢);>0 be nonnegative, adapted. Suppose there are nonnega-
tive, Fi-adapted processes (&), (By), (&) s-t.

EVir | Al < (1+E&)Ve — & + B t>0,

with > 755 & <oo and >y B < oo as.
oo

Then, V; converges a.s. to a finite, nonnegative limit Vo, and Z i <oas.
t=0

{ Corollary

If nonnegative (V;) satisfies E[V; | Hy—q] < (1—0t)Vi—q+Br with >~ o = coand Y-, By < oc,
then V; — O as.

Useful corollary: & = 0, §; = a;V; with o € [0,1]. If 3°; 0 = 00, then Voo = 0 as.

Since Y-, o4V < o0; if - 0 = o0, only possible limit Vo is 0.
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Approachability

Proof
Step 1: Projection Rule.
(1) Letyt— € Pe(Uit-1)-
(2) IfUjs—1 € C, then play any A;; € A(A)).
(3) If Tj—1 ¢ C,then, as Cis B-set, there is Aj; € A(A;) s.t. VA,
Uit A=) = Y1) - (Ujg=1 =~ y1-1) < 0.
(4) Play Aj; at stage t.
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Approachability

Proof
Step 2: One-Step Inequality.
Update formula: U;; = Tjg—1 + }(u,yt(at) = Uj-1). LetVy:=d(T;, C) = ||Tjy —ytHz.



Approachability

Proof
Step 2: One-Step Inequality.
Update formula: U;; = Tjg—1 + }(u,yt(at) = Uj-1). LetVy:=d(T;, C) = ||Tjy —ytHz.

, - 2 _ 2
Since y1-1 € C, then [|T; = yel|* < [|Tjt = Y11=



Approachability

Proof

Step 2: One-Step Inequality.
Update formula: Tjy = Tjp—1 + 1(Uir(@r) = Tjg—1). Let Ve = d(@e, C) = ||Tjr — vl
Since i1 € C, then || = yel|* < 1T = yeall*.

I 2 _ - - 2 _ - 2
Expanding: [|Tj¢ = Ye-1l1? = |Tiz—1~Ye1+ 1 U;2@0) = Ti=1)I* = |Tie=1 ~ YelI>+ Z (Uie(ar) ~
- . 1 — 2
Ujt-1) - (Tie-1 = Ye=1) + gz lluie(@e) = Ty l=.



Approachability

Proof
Step 2: One-Step Inequality.
Update formula: Tjy = Tjp—1 + 1(Uir(@r) = Tjg—1). Let Ve = d(@e, C) = ||Tjr — vl
Since i1 € C, then || = yel|* < 1T = yeall*.
Expanding: [T = ye-1ll* = 1|81 =Ye-1+ FUi@0) = Ty-n)l® = [1By1 = Yerll® + 2 (uye(ar) -
Ui-1) - @1 = Y1) + g luge(@e) = Tyl

o (Uie(@r) = Tjg=1) - Tie=1 = Ye=1) = Wie(@0) = ye=1) - @ir=1 = Ye=1) = |Tip=1 = yel



Approachability

Proof
Step 2: One-Step Inequality.
Update formula: Tjy = Tjp—1 + 1(Uir(@r) = Tjg—1). Let Ve = d(@e, C) = ||Tjr — vl
Since i1 € C, then || = yel|* < 1T = yeall*.
Expanding: [[;; = ye-1ll? = 1Ti¢-1 =i+ HUie@) = Tie-)lI® = (Tie-1 = yea |2+ 2uielar) -
Ui-1) - @1 = Y1) + g luge(@e) = Tyl
o (Uir(@) = Ty—1) - Gier = Yeo1) = WUie@e) = Yi1) - @iee1 = Vi) = N1 = yeall.
o B-set: E[(u;t(ar) = ¥t-1) - (Uje-1 = Ye-1)IHe=1] = (Ui, M) = Tjg=1) - (Ti=1 = Ye-1) < 0.



Approachability

Proof
Step 2: One-Step Inequality.
Update formula: Tjy = Tjp—1 + 1(Uir(@r) = Tjg—1). Let Ve = d(@e, C) = ||Tjr — vl
Since i1 € C, then || = yel|* < 1T = yeall*.
Expanding: [T = ye-1ll* = 1|81 =Ye-1+ FUi@0) = Ty-n)l® = [1By1 = Yerll® + 2 (uye(ar) -
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e B-set: E[(Ujz(ar) = y1-1) - i1 = Ye=)IHe=1] = (UieNig Aiit) = Tjg=1) - (i1 = ye=1) < 0.
o Uy € FMM™ = luir(ar) ~ Tyl < 2l|uie|? < 4mM2.



Approachability

Proof
Step 2: One-Step Inequality.
Update formula: Tjy = Tjp—1 + 1(Uir(@r) = Tjg—1). Let Ve = d(@e, C) = ||Tjr — vl
Since i1 € C, then || = yel|* < 1T = yeall*.
Expanding: [T = ye-1ll* = 1|81 =Ye-1+ FUi@0) = Ty-n)l® = [1By1 = Yerll® + 2 (uye(ar) -
Ui-1) - @1 = Y1) + g luge(@e) = Tyl
o (Uir(ar) = Tig—1) - @ig—1 = Ye1) = (WUie(@e) = Yee1) - @ige1 = Yer) = [1Tige = Vel
e B-set: E[(Ujz(ar) = y1-1) - i1 = Ye=)IHe=1] = (UieNig Aiit) = Tjg=1) - (i1 = ye=1) < 0.
o Uy € FMM™ = luir(ar) ~ Tyl < 2l|uie|? < 4mM2.

El[Ti; = yell® | He=al < El|Ti¢ = Yeerll® | Heal

_ 2 1 _ _ 1 _ 2
= ||Tjp—1 = yeall” + E[?(Ui,t(at) = Ujg-1) - Ujg—1 = Y1) + szHUi,t(at) = Ujg-1ll” | He=A]



Approachability

Proof
Step 2: One-Step Inequality.
Update formula: Tjy = Tjp—1 + 1(Uir(@r) = Tjg—1). Let Ve = d(@e, C) = ||Tjr — vl
Since i1 € C, then || = yel|* < 1T = yeall*.
Expanding: [T = ye-1ll* = 1|81 =Ye-1+ FUi@0) = Ty-n)l® = [1By1 = Yerll® + 2 (uye(ar) -
Ui-1) - @1 = Y1) + g luge(@e) = Tyl
o (Uir(ar) = Tig—1) - @ig—1 = Ye1) = (WUie(@e) = Yee1) - @ige1 = Yer) = [1Tige = Vel
e B-set: E[(Ujz(ar) = y1-1) - i1 = Ye=)IHe=1] = (UieNig Aiit) = Tjg=1) - (i1 = ye=1) < 0.
o Uy € FMM™ = luir(ar) ~ Tyl < 2l|uie|? < 4mM2.

ElTi¢ = yell* | Heq] < NNy = yeal® | Heal
_ 2 1 _ _ 1 _ 2
= ||Tjp—1 = yeall” + E[?(Ui,t(at) = Ujg-1) - Ujg—1 = Y1) + z luit(@e) = Uig-1ll” | He—1]

_ 2 _ 1,_ 1
< NTige = yeml® + ?E[(Ui,t(at) = Y1-1) - Uj-1 = Ye=1) | Hea] = ¥||Uf,r—1 — yel? + t74mM2



Approachability

Proof
Step 2: One-Step Inequality.
Update formula: Tjy = Tjp—1 + 1(Uir(@r) = Tjg—1). Let Ve = d(@e, C) = ||Tjr — vl
Since i1 € C, then || = yel|* < 1T = yeall*.
Expanding: [T = ye-1ll* = 1|81 =Ye-1+ FUi@0) = Ty-n)l® = [1By1 = Yerll® + 2 (uye(ar) -
Ui-1) - @1 = Y1) + g luge(@e) = Tyl
o (Uir(ar) = Tig—1) - @ig—1 = Ye1) = (WUie(@e) = Yee1) - @ige1 = Yer) = [1Tige = Vel
e B-set: E[(Ujz(ar) = y1-1) - i1 = Ye=)IHe=1] = (UieNig Aiit) = Tjg=1) - (i1 = ye=1) < 0.
o Uy € FMM™ = luir(ar) ~ Tyl < 2l|uie|? < 4mM2.

El[Ti; = yell® | He=al < El|Ti¢ = Yeerll® | Heal

_ 2 1 _ _ 1 _ 2
Tit=1 = ye=allI* + E[?(Ui,t(at) = Ujg-1) - Ujg—1 = Y1) + z luit(@e) = Uig-1ll” | He—1]

IN

_ 2 _ 1,_ 1
1Tit—1 = yeall* + ?E[(Ui,t(at) = Y1-1) - Uj-1 = Ye=1) | Hea] = ¥||Uf,r—1 — yel? + t74mM2

2\ - 2,1 2
< <1 - ;) (1Tit-1 = ye=all” + §4mM

Gongalves (UCL) Approachability, Calibration, and Adaptive Algorithms 14



Approachability

Proof
Step 3: Apply Robbins and Siegmund (1971).

- 2\ - 1
L3¢ = y1l1® | Hel < (1 - ?) G2 = Vel + 5 4ms®

Satisfies conditions of Robbins and Siegmund (1971)’s corollary.

= [Ty~ yi|* — Oas.

Gongalves (UCL) Approachability, Calibration, and Adaptive Algorithms



Generalisations and Variations

Theorem (Blackwell 1956)
If C is B-set for player j, then it is approachable by player i.

Generalisations and Variations:

Lehrer (2002 IJGT): generalises Blackwell's approachability theorem to
infinite-dimensional spaces.

Hou (1971 AMS): A closed set C is approachable by player i if and only if it contains
a B-set for player i.

Gongalves (UCL) Approachability, Calibration, and Adaptive Algorithms 16



Generalisations and Variations

Theorem 14.25 (Maschler, Solan, and Zamir 2013)

If C is convex and closed, then C is approachable by one player if and only if it is not
excludable by the other player.

Gongalves (UCL) Approachability, Calibration, and Adaptive Algorithms



Generalisations and Variations

Theorem 14.25 (Maschler, Solan, and Zamir 2013)

If C is convex and closed, then C is approachable by one player if and only if it is not
excludable by the other player.

Notation:
H(x,y) ={z € R"|(x = y) - (z - y) = 0} Hyperplane passing through y that's
orthogonal/perpendicular to line passing through x and y.
H™(x,y) ={z € R"|(x - y) - (z - y) < 0} Half-space defined by hyperplane H(x, y).
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Generalisations and Variations

Theorem 14.25 (Maschler, Solan, and Zamir 2013)

If C is convex and closed, then C is approachable by one player if and only if it is not
excludable by the other player.

Notation:
H(x,y) ={z € R"|(x = y) - (z - y) = 0} Hyperplane passing through y that's
orthogonal/perpendicular to line passing through x and y.
H™(x,y) ={z € R"|(x - y) - (z - y) < 0} Half-space defined by hyperplane H(x, y).

Theorem 14.24 (Maschler, Solan, and Zamir 2013)

If Cis convex and closed, then the following are equivalent:
(1) Cis approachable by playeri; (2) Cis B-set for player i; and

(3) V half-spaces H™ (x,y) containing C, 3\; € A(4,) : VA_;, ui(h, ;) €C H (x,y).

For convex sets, approachability is equivalent to B-set property!

Since any half-space containing C is approachable, closed and convex, it must also be a
B-set. [(3) says a bit more than this, but this is the idea]

Gongalves (UCL) Approachability, Calibration, and Adaptive Algorithms 17



Overview

2. Approachability

— Approachability with Time-Varying Payoffs



Approachability with Time-Varying Payoffs

Setup:
Actions A;, i =1,2,A = Ay x Ay; Histories H; := AL, H := UsH; Strategies
o H — A(A), A € AA).
Foreveryt=12,..,i=12uj A — [-MM™ withups = —upy.
Uie@) = {uie, Ap), Ay € AGA))-
(Note uniform bound on payoffs.)

o T
Let Ujr = 7 Y peg Uje(@r).

Definition

C C R is approachable by player i if 3o; s.t. Ve > 0, 3T : Vo_;, P°(d(Tj, C) < €Vt >
T) > 1 - ¢ in this case, 6; approaches C for player i.

Gongalves (UCL) Approachability, Calibration, and Adaptive Algorithms 18



Approachability with Time-Varying Payoffs

{ Definition

C is strong B-set for player i if, Vt, Vx € Utco(uj;) \ C, Iy € Pe(x) and &; € A(A) s.t.
(X =) € Ny, o)) i, YA, (U A=) = y) - (x —y) < 0.

{ Theorem

If C is closed strong B-set for player i, then, C is approachable by player i.

Proof we used can be used with minor modifications.

Gongalves (UCL) Approachability, Calibration, and Adaptive Algorithms 19



Approachability with Time-Varying Payoffs

Definition

C is B-set for player i at time t if, ¥x € co(uj;) \ C, 3y € Pc(x) and &; € A(A)) s.t.
(X =) € Ny, o)), e, YA, (U (i A=) = y) - (x —y) < 0.

{ Theorem

If Cis closed and convex and a B-set for player i for every t, then it is approachable by
player i.

Gongalves (UCL) Approachability, Calibration, and Adaptive Algorithms 20



Approachability with Time-Varying Payoffs

Proof

Step 1: Projection Rule.

(1) Letyi € Pe(Tjz-1).

(2) IfUj¢—1 € C, then play any A;; € A(A)).

(3) If Gjy—1 ¢ C, note: C convex and closed == (TUj;—1 — ¥r-1) € Nelyr1) <=
(Uit-1=Y=1) - @ = y1-1) <0 <= C C H (U-1,Y1-1)-

(4) Cconvex,closed,B-setatt+C C H (U1, ¥t-1) = 3N € A(A)) - VA, u,t(x A) €
H (Gt-1.yt-1) == Nip € AA)  YA-(Ty-1 = Y1) - (Ui, A) = Y1) <

(5) Play A;; at stage t.

Steps 2 and 3 as before, just replacing u; with uj;.

Gongalves (UCL) Approachability, Calibration, and Adaptive Algorithms
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Approachability with Time-Varying Payoffs

{ Definition
C is strong B-set for player i if, Vt, Vx € Utco(ujs) \ C, 3y € Pe(x) and &; € A(A)) st

(X = ¥) € Ny, o)), e, VA, (Ui (i A=) = y) - (x —y) < 0.

(Deﬂnition
C is B-set for player i at time t if, ¥x € co(uj;) \ C, Iy € Pc(x) and &; € AA)) st.

(X = ¥) € Ny, )W), e, VA, (Ui (i A-j) —y) - (x —y) < 0.

With time-varying payoffs, it matters whether Vx € U; co(u;;) \ C or ¥x € co(u;j;) \ C!

Strong B-set (non-canonical terminology) + closed is enough for approachability.

B-set at every t + closed is NOT enough for approachability; counterexamples exist.
Need convexity to make it work in general.

Gongalves (UCL) Approachability, Calibration, and Adaptive Algorithms 22



Overview

2. Approachability

— Application: Picking Experts



Application: Picking Experts

S states of nature. A actions. Payoffsu: A x S — R. Set of experts E.

Every period t,

(1) state s realises,

(2) each expert recommends action ae; € A,

(3) DM chooses which expert to follow e; € E and adopts their recommended action,
(4) payoffs realise, and DM observes s;.

Gongalves (UCL) Approachability, Calibration, and Adaptive Algorithms
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Application: Picking Experts

A actions. S states of nature. Payoffsu: A x S — R. Set of experts E.

4 t-1 .
History: h; € H; = (S x Al x E)" " (previous states, what each expert recommended,
expert chosen). H = UiHs.

Strategy: 6 : H — A(E).
Average payoff: Tir(0) = + Y Yoo 6(hi)(€)u(aes, St).
Payoff from following particular expert e: Ur(e).
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Application: Picking Experts

A actions. S states of nature. Payoffsu: A x S — R. Set of experts E.

4 t-1 .
History: h; € Hy := (S x AFl x E)" * (previous states, what each expert recommended,
expert chosen). H = UiHs.

Strategy: 6 : H — A(E).
Average payoff: Tir(0) = + Y Yoo 6(hi)(€)u(aes, St).
Payoff from following particular expert e: tr(e).

Small problem: DM doesn’t know what experts actually know, whether have full info,
partial, no info, biased, etc.

Definition

DM’s ¢ is no-regret strategy if Ve € £ and each sequence sy, Sy,

oo0p

p° <Iiminf0t(c) - Uie) > 0) =1

t—oo

Does no-regret strategy even exist? Can we characterise it?

Gongalves (UCL) Approachability, Calibration, and Adaptive Algorithms
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Application: Picking Experts

Theorem

The DM has a no-regret strategy.

Gongalves (UCL) Approachability, Calibration, and Adaptive Algorithms
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Application: Picking Experts

Theorem

The DM has a no-regret strategy.

Proof

Opponent: nature, choosing g : H — A(S). C = RIE.

Letur : E x S — Rbest uies) = u(@er, S).

ForA € A(E) and y € A(S), let vi(A,) := (UL, ) = Ur(e, 7))ok € RE.

Let vy = %ngr vi(o(ht), og(hy)). Regret vector: no-regret <= liminf; v; € C.

For x € R, projection onto Cis y = x* (positive part), and the normal is x~ = y — x
(negative part).

Choose the Blackwell action at x: if ", xe >0, set

) = erx‘ (put weight on experts relative to which you are behind),
e’ e’

and any A* if x € C. Note: ¥ = regret matching!

Gongalves (UCL) Approachability, Calibration, and Adaptive Algorithms 25




Application: Picking Experts — Proof (via Blackwell)

Proof

C = RE viLy) = U y) = e M)ece € RFL 77 = 3 S 7 vilo(hy), oo(hy)).

Forx € Ry == x*, x™ := y = x. For =(x > 0), set A(e) := S




Application: Picking Experts — Proof (via Blackwell)

Proof

C = REL veW ) = (Ur(hy) = urle. Meee € R 77 = 3 Ticr vilolhe), oo (h).
Forx € Rl y = x*, x™ =y — x. For =(x > 0), set A*(e) := <2¢

For any opponent choice y € A(S),
() =x=>0) = x| =x=-yl>0;



Application: Picking Experts — Proof (via Blackwell)

Proof

C = RELviL7) = (A y) - utle,¥))eer € REL V7 = %Erg vi(a(hy), oo (hy)).

Forx € Rl y = x*, x™ =y — x. For =(x > 0), set A*(e) := S

For any opponent choice y € A(S),
() =(x>0) = x| = lIx-yl>0;

(0 > (v, ) =y)-(x=y) = K=V, ))-x" = XX =vW9) X7 = —vi(Wy) X

Note that

er Zk Jur(e’,y) - urle,y)
Z S Yol e',y) - er uley) =Y xeur€ ) =D xeuley) =
el e" e’ e




Application: Picking Experts — Proof (via Blackwell)

Proof

C = RELviL7) = (A y) - utle,¥))eer € REL V7 = %Erg vi(a(hy), oo (hy)).

Forx € REl y = x*, x™ = y — x. For =(x > 0), set A*(e) := <=

e

Ze’ X;/ ’
For any opponent choice y € A(S),
() =(x>0) = x| = lIx-yl>0;
(i) 0 > (e, y)=y)-(x=y) = (" =ve W, 7)-x" = XX =ve (W, 9) X" = =v (W, y)-x"
Note that

er Zk Jur(e’,y) - urle,y)
Z S Yol e',y) - er uley) =Y xeur€ ) =D xeuley) =
el e" e’ e

Hence C is closed, convex, B-set at every t. Blackwell's approachability theorem with
time-varying payoffs = V; approaches C as, i.e,
Iitm inf (TU¢(0, 09) — Ur(e, o)) > 0 for all e € E and any of nature’s moves .
—00
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Application: Picking Experts

Theorem

The DM has a no-regret strategy.

Strategy (implementable): compute current average regrets x := V;_q; if x & C play A*.

No need to know anything about the experts.

Gongalves (UCL) Approachability, Calibration, and Adaptive Algorithms
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Overview

2. Approachability

— Universal Consistency



Hannan (1957) Consistency

Setup:
Two players face repeated game.

Actions: A;; Stage-Game Payoffs: u; : Ay x Ay = R Uy = —uy;

Histories: H; := A\, H := U;H;; Strategies: 6, H — A(A); A € A(A).

Gongalves (UCL) Approachability, Calibration, and Adaptive Algorithms
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Hannan (1957) Consistency

Setup:

Two players face repeated game.
Actions: A;; Stage-Game Payoffs: u; : Ay x Ay = R Uy = —uy;
Histories: H; := A\, H := U;H;; Strategies: 6, H — A(A); A € A(A).
Expected Payoffs: u;(c(h;)).

Average Payoffs: ;7(c) = 7 Y"1 Uj(@y).

Gongalves (UCL) Approachability, Calibration, and Adaptive Algorithms

28



Hannan (1957) Consistency

Setup:
Two players face repeated game.

Actions: A;; Stage-Game Payoffs: u; : Ay x Ay = R Uy = —uy;

Histories: H; := A\, H := U;H;; Strategies: 6, H — A(A); A € A(A).

Expected Payoffs: u;(c(h;)).
Average Payoffs: ;7(c) = 7 Y"1 Uj(@y).

Average Expected Payoff: U; (o) := % >ot<T 2oa olhr)(@)ui(a).
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Hannan (1957) Consistency

Setup:
Two players face repeated game.

Actions: A;; Stage-Game Payoffs: u; : Ay x Ay = R Uy = —uy;

Histories: H; := A\, H := U;H;; Strategies: 6, H — A(A); A € A(A).

Expected Payoffs: u;(c(h;)).
Average Payoffs: ;7(c) = 7 Y"1 Uj(@y).
Average Expected Payoff: U; (o) := % >ot<T 2oa olhr)(@)ui(a).
Benchmark: (External) Regret
External regret: max, ca, Ujt(a;) — Uj1(0).
External regret: comparison relative to swapping to fixed action.

Hannan consistency: lim sup max bj;(a;) — Tj¢(c) < 0 a.s.
T—oo i

Goal: show existence of Hannan consistent strategy.
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Hannan (1957) Consistency

Setup:

Two players face repeated game.
Actions: A;; Stage-Game Payoffs: u; : Ay x Ay = R Uy = —uy;
Histories: H; := A\, H := U;H;; Strategies: 6, H — A(A); A € A(A).
Expected Payoffs: u;(c(h;)).
Average Payoffs: ;7(c) = 7 Y"1 Uj(@y).
Average Expected Payoff: U; (o) := % >ot<T 2oa olhr)(@)ui(a).
Benchmark: (External) Regret

External regret: max, ca, Ujt(a;) — Uj1(0).

External regret: comparison relative to swapping to fixed action.

Hannan consistency: lim sup max bj;(a;) — Tj¢(c) < 0 a.s.
T—oo i

Goal: show existence of Hannan consistent strategy.

Boils down to picking experts when each actions is consistently recommended by
same expert.

Alternative via SFP

Gongalves (UCL) Approachability, Calibration, and Adaptive Algorithms
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Smoothed Fictitious Play and Universal Consistency

Smoothed Fictitious Play (SFP)

Let U € RY, c(V) = D (MI(1/IA]) = 3=, Ma) In(A@)) + In(Al), V(U,m) := maxyeapm A -
U-mnc() and A*(Un) = argmaxyepay - U= nc@). Forany t > 2, let o(hy) = A =
A (Ur-1,mp) where Uy = (u(@, %)) aea @and (m¢) Mt 4 0.

Can generalise to additive perturbed utility with infinite mg cost at boundary of simplex.

Interpretation: best respond to slightly perturbed empirical model; perturbations vanish.

No ties.

Gongalves (UCL) Approachability, Calibration, and Adaptive Algorithms
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Smoothed Fictitious Play and Universal Consistency

Smoothed Fictitious Play (SFP)

Let U € RY, c(V) = D (MI(1/IA]) = 3=, Ma) In(A@)) + In(Al), V(U,m) := maxyeapm A -
U-mnc() and A*(Un) = argmaxyepay - U= nc@). Forany t > 2, let o(hy) = A =
A (Ur-1,mp) where Uy = (u(@, %)) aea @and (m¢) Mt 4 0.

Can generalise to additive perturbed utility with infinite mg cost at boundary of simplex.
Interpretation: best respond to slightly perturbed empirical model; perturbations vanish.

No ties.

Proposition 4.5 (Fudenberg and Levine (1998; 1999 GEB))

Under SFPR lim sup max Tj+(a;) — Tj(o) < 0 as.
t—o0 i Ar ' '

Can also accommodate time-varying payoffs.

Gongalves (UCL) Approachability, Calibration, and Adaptive Algorithms 29



Overview

3. Calibration
— Classical Calibration

— Calibeating Forecasts
— More on Calibration

— Calibration and Learning in Games



Calibration

Important element of learning in games: forecasting opponent.

Calibration: from learning literature (Dawid 1982 JASA)

Suppose that, in a long conceptually infinite sequence of weather forecasts, we
look at all those days for which the forecast probability of precipitation was, say,
close to some given value p and assuming these form an infinite sequence deter-
mine the long run proportion p of such days on which the forecast event rain in
fact occurred. The plot of p against p is termed the forecaster’s empirical calibra-
tion curve. If the curve is the diagonal p = p, the forecaster may be termed well
calibrated.
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Calibration

Important element of learning in games: forecasting opponent.

Calibration: from learning literature (Dawid 1982 JASA)

Suppose that, in a long conceptually infinite sequence of weather forecasts, we
look at all those days for which the forecast probability of precipitation was, say,
close to some given value p and assuming these form an infinite sequence deter-
mine the long run proportion p of such days on which the forecast event rain in
fact occurred. The plot of p against p is termed the forecaster’s empirical calibra-
tion curve. If the curve is the diagonal p = p, the forecaster may be termed well
calibrated.

Not being calibrated is bad.

Dawid (1982 JASA): If data generated by probabilistic model, then forecasts
generated by that model are a.s. calibrated.

Not being calibrated — Have wrong probabilistic model.
Statisticians, pollsters, forecasters want to be calibrated.
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Aspiring to Calibration

https:

//www.worldclimateservice.com/2020/07/06/what-is-forecast-reliability/

Gongalves (UCL)
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Aspiring to Calibration

Figure 2. Comparison of the forecast vote % for Democratic candidates
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https://www.science.org/content/blog-post/
analysis-prediction-results-united-states-congressional-elections-2018
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Aspiring to Calibration

All politics
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Fic. 2.—Calibration plots of FiveThirtyEight (projects.fivethirtyeight.com/checking-our-work, updated June 26, 2019). For example, in the “Every-
thing” plot, the 10% data point (which lies slightly below the diagonal) has the following attached description: “We thought the 107,962 observations
in this bin had a 10% chance of happening. They happened 9% of the time.” A color version of this figure is available online.

(Foster Hart 2021 JPE)
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Aspiring to Calibration

Proportion BR
IS}
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Proportion BR
o
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Average Prediction

Average Prediction

F16. 1.—In Foster and Stine (2004), the business problem was to forecast the chance of a person going bankrupt in the next month. Both of the above
forecasts are based on a large linear model. The one on the left was obtained by a logistic regression and the one on the right by a monotone regression.
The left-hand forecast is not calibrated, whereas the right-hand forecast is calibrated and so can be used directly for decision-making. BR = bankruptcy.

(Foster Hart 2021 JPE)
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Aspiring to Calibration

(Foster Hart 2021 JPE)

Gongalves (UCL)
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Fic. 8.—Calibration plot of ElectionBettingOdds (electionbettingodds.com/TrackRecord
.html, updated November 13, 2018), which “tracked some 462 different candidate chances
across dozens of races and states in 2016 and 2018.” A color version of this figure is available

online.
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Aspiring to Calibration
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https://www.football-data.co.uk/blog/wisdom_of_the_crowd.php
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Overview

3. Calibration
— Classical Calibration



Calibrated Learning: Setup

Stage Game
Players i € {1,2}; actions A; finite; A = A7 x As.
Payoffsu;: A — R.

Forecasts: A(A_)).

Repeated Play: t = 1,2,....
History H; = (A(A_)) x xA)"1 H = UiHy.
Strategies o; : H — A(A)); realised actions a; = (a1, a2;).
Empirical distribution 6; € A(A): 6¢(a) = %ngﬂ{asza}

Beliefs and Behaviour
Player i's beliefs Gi,, “H— AA).

Myopic best replies: a;; € arg max u;(a;, Gi_,')
a

Fix a deterministic tie-breaking rule.
Forecasting Rule: ¢; : H — F.
Deterministic: ¢; - H — F C A(A-)),
e fiy = oi(hy) = o €F.
Stochastic: ¢; : H — A(F). Realised forecast fj; ~ ¢;(hy).
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Calibration

Assume F finite; F = {c

Gongalves (UCL)
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Calibration

Assume F finite; F = {c

1

—jr e

M

,G,,'.

Forecast Counts: 0} := 3= T -om).

B p a*l,s‘l{f,szcﬂ”j}

Conditional Empirical Frequency: 67}, := —=——=—=" whenever nj} > 0.

Gongalves (UCL)
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Calibration

Assume F finite; F ={c,,...,a"}.

Forecast Counts: 0} := 3= T -om).

- .. _ 2s<t @isT =om)
Conditional Empirical Frequency: cr_”,t = % whenever nf’g > 0.

} m ,
Calibration Error of Forecast m: K[} := ||G”}, — o™}||In/}/tif i} > 0; k7 := 0 ow.

Calibration Score: K = 3 kf}.
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Calibration

Assume F finite; F ={c,,...,a"}.

Forecast Counts: 0} := 3= T -om).

- .. _ 2s<t @isT =om)
157, = 2= s \whenever nf > 0.
Conditional Empirical Frequenc m,t = gh
} m ,

Calibration Error of Forecast m: k77 = |67}, — o}||n}/tif n/{ > 0; i} := 0 ow.
Calibration Score: Kj; == °, k.

Definition (Foster and Vohra 1998 Biometrika)

Forecasting rule ¢; is e-calibrated if for every 6_;

limsupK;: <ea.s.
t—o0
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Calibrated Forecasts

Remark (Oakes 1985 JASA; Dawid 1985 JASA)

For small enough €, no deterministic forecasting rule can be e-calibrated.
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Calibrated Forecasts

{ Remark (Oakes 1985 JASA; Dawid 1985 JASA)

For small enough €, no deterministic forecasting rule can be e-calibrated.

Theorem (Foster and Vohra 1998 Biometrika)

Ve > 0, there is e-calibrated forecasting rule.
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Calibrated Forecasts

Foster recalls that "this paper took the longest to get published of any | have
worked on. | think our first submission was about 1991. Referees simply did not
believe the theorem — so they looked for amazingly tiny holes in the proof. When
the proof had been compressed from its original 15-20 pages down to about 1, it
was finally believed.” (in Olszewski 2015)
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Calibrated Forecasts

Foster recalls that "this paper took the longest to get published of any | have
worked on. | think our first submission was about 1991. Referees simply did not
believe the theorem — so they looked for amazingly tiny holes in the proof. When
the proof had been compressed from its original 15-20 pages down to about 1, it
was finally believed.” (in Olszewski 2015)

Proving the calibration rule theorem
Original proof: Foster and Vohra (1998 Biometrika).
Hart (2023): proof via minmax theorem (existence).
Foster (1999 GEB): proof via Blackwell approachability.

Fudenberg and Levine (1999 GEB): specific construction.
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Calibrated Forecasts

Proof Idea

m

Quadratic Cost of Forecast m: ¢} := |57, - o707 if nf, > 0; ¢!}

Total Cost: Cj; =Y, ci.

Fix a partition IT; of A(A_;) where:
IT; = {B™M_, of A(A_)), for some finite M;
Each B} is convex and 6"} € B”} is the centroid of B].
Fineness of grid: maxm MaXs_epm loT — ol <m.
Write IT;(M, n)

Player i chooses ¢; : H — F.

Gongalves (UCL) Approachability, Calibration, and Adaptive Algorithms
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Calibrated Forecasts

Proof Idea
2,
Quadratic Cost of Forecast m: c} = |67}, — o7} ||*n}} if ny > 0; Cj¢ =", cfY.
&7 +1
gi(m,a-) = E[Cj; = Cjt-1 | Hi1, fiy =0T a ;= a-]] = (ﬂ,"?q +1) ﬁ - G—iH = Cii1-

Let g; be payoffs in zero-sum game where i chooses A € A(M) and nature y € A(A_)).
T-initialised myopic strategies:

(1) Initialisation Phase: Each pure strategy repeated T times.

(2) Att > TM, choose A+ = maxmin strategy in zero-sum game with payoffs g;.
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Calibrated Forecasts

Proof Idea
Quadratic Cost of Forecast m: cf} = |67}, - ,,||2 ifnfly>0; Cjp:=> ¢}

— _ m 671,[+1m m
gt(m,a-) = E[Cj¢ = Cjy— | H-1, fiy = G—Ua =a-]= (ni,t—1 +1) A T 6-,’ ~Cit-1-

Let g; be payoffs in zero-sum game where i chooses A € A(M) and nature y € A(A_)).
T-initialised myopic strategies:
(1) Initialisation Phase: Each pure strategy repeated T times.

(2) Att > TM, choose A+ = maxmin strategy in zero-sum game with payoffs g;.

Theorem (Fudenberg and Levine (1999 GEB))

For any g, 3I;(M, n) s.t. T-initial myopic strategy satisfies limsup C;;/t < e a.s.

Lemma (Fudenberg and Levine (1999 GEB))

After the initialisation phase, a T-initial myopic strategy has gr < 55 +M°.
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Overview

3. Calibration

— Calibeating Forecasts



Calibration

Day 1 2 3 4 5 6 K R B
Rain 1 0 1 0 1 0

F1 100% 0% 100% 0% 100% 0% 0 0 0
F2 50% 50% 50% 50% 50% 50% 0 0.25 0.25

F1GURE 1. Two calibrated forecasts.

(Foster Hart 2023 TE)
Calibration Score: Kt = 1 gy S Vty=omy 167" = full .
Calibration: getting K; arbitrarily close to 0.

Two calibrated forecasts can be wildly different regarding accuracy of predictions.
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Quadratic Scoring Rule

Day 1 2 3 4 5 6 K R B
Rain 1 0 1 0 1 0

F1 100% 0% 100% 0% 100% 0% 0 0 0
F2 50% 50% 50% 50% 50% 50% 0 0.25 0.25

F1GURE 1. Two calibrated forecasts.

Brier Score (1950): Bt := 3 ,<¢ lae = fel|.
Original QSR of belief elicitation. F1has B; = 0; F2 has B; = 1/4.
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Quadratic Scoring Rule

Day 1 2 3 4 5 6 K R B
Rain 1 0 1 0 1 0

F1 100% 0% 100% 0% 100% 0% 0 0 0
F2 50% 50% 50% 50% 50% 50% 0 0.25 0.25

F1GURE 1. Two calibrated forecasts.

Brier Score (1950): B = 13 < llag = fol|?.

Original QSR of belief elicitation. F1has B; = 0; F2 has B; = 1/4.
Refinement Score: Ry = 1 3¢ S Nty =omy 157 — ac|?.

Captures within-bin variance of forecasts.
Br=Re+ K (EDXC] = V(X) +EIXI?).
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Quadratic Scoring Rule

Day 1 2 3 4 5 6 K R B
Rain 1 0 1 0 1 0

F1 100% 0% 100% 0% 100% 0% 0 0 0
F2 50% 50% 50% 50% 50% 50% 0 0.25 0.25

F1GURE 1. Two calibrated forecasts.
Brier Score (1950): By := 13", lla¢ = fo|

Original QSR of belief elicitation. F1has B; = 0; F2 has B; = 1/4.

Refinement Score: Ry = 1 3¢ S Nty =omy 157 — ac|?.

Captures within-bin variance of forecasts.
Br=Re+ K (EDXC] = V(X) +EIXI?).

Is there natural trade-off between calibration and refinement?
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Quadratic Scoring Rule

Day 1 2 3 4 5 6 K R B
Rain 1 0 1 0 1 0

F1 100% 0% 100% 0% 100% 0% 0 0 0
F2 50% 50% 50% 50% 50% 50% 0 0.25 0.25

F1GURE 1. Two calibrated forecasts.
Brier Score (1950): By := 13", lla¢ = fo|

Original QSR of belief elicitation. F1has B; = 0; F2 has B; = 1/4.

Refinement Score: Ry = 1 3¢ S Nty =omy 157 — ac|?.

Captures within-bin variance of forecasts.
Bi=Ri+Kr.  (EX?] = V(X) + EX]?).
Is there natural trade-off between calibration and refinement?
For any forecast rule, is it possible to calibrate Ky without increasing R;?

Offline, yes. Take forecast rule and, for each bin m, readjust the forecast ¢™ to

correspond to within-bin historical frequency. Keep R (within-bin variance) and
eliminate ;.

‘Calibeating”: Reducing Brier score by amount equal to calibration score.
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Quadratic Scoring Rule

Day 1 2 3 4 5 6 K R B
Rain 1 0 1 0 1 0

F1 100% 0% 100% 0% 100% 0% 0 0 0
F2 50% 50% 50% 50% 50% 50% 0 0.25 0.25

F1GURE 1. Two calibrated forecasts.

Brier Score (1950): B = 13 < llag = fol|?.
Original QSR of belief elicitation. F1has B; = 0; F2 has B; = 1/4.
Refinement Score: Ry = 1 3¢ S Nty =omy 157 — ac|?.
Captures within-bin variance of forecasts.
By =R+ K. (EX? = V(X)+EX]).
Is there natural trade-off between calibration and refinement?
For any forecast rule, is it possible to calibrate Ky without increasing R;?

Offline, yes. Take forecast rule and, for each bin m, readjust the forecast ¢™ to
correspond to within-bin historical frequency. Keep R (within-bin variance) and
eliminate ;.

‘Calibeating”: Reducing Brier score by amount equal to calibration score.
And procedures to do this online, i.e, on-the-fly?
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Calibeating

Foster Hart (2023 TE), Calibeating Beating forecasters at their own game

Typical calibrated algorithms: get zero calibration score, but do rather poorly at
refinement score. Would suggest trade-off.

Point of the paper: for any forecast rule, it is possible to obtain a calibrated
forecast (Ky — 0) without increasing the refinement score.
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Calibeating

Foster Hart (2023 TE), Calibeating Beating forecasters at their own game

Typical calibrated algorithms: get zero calibration score, but do rather poorly at
refinement score. Would suggest trade-off.

Point of the paper: for any forecast rule, it is possible to obtain a calibrated
forecast (Ky — 0) without increasing the refinement score.

Procedure 1: replace each forecast by empirical frequency on previous days in which
this forecast was made.

Issue: Procedure may not yield calibrated forecasts. Can do better.
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Calibeating

Foster Hart (2023 TE), Calibeating Beating forecasters at their own game

Typical calibrated algorithms: get zero calibration score, but do rather poorly at
refinement score. Would suggest trade-off.

Point of the paper: for any forecast rule, it is possible to obtain a calibrated
forecast (Ky — 0) without increasing the refinement score.

Procedure 1: replace each forecast by empirical frequency on previous days in which
this forecast was made.

Issue: Procedure may not yield calibrated forecasts. Can do better.

Procedure 2: Self-calibeating = Calibrating; issue of infinite regress.
Calibeating by calibrated forecast via stochastic forecast-hedging calibration for
each bin.
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Overview

3. Calibration

— More on Calibration



Other Topics

Detecting the Expert

Issue: calibration seems to suggest we cannot differentiate between expert and
ignorant.

Not exactly true. E.g., get putative expert to submit theory at time 0; can find tests
that cannot be ignorantly passed on almost all data sets (Olszewski and
Sandroni 2009 AnnStat, A nonmanipulable test).

Bayesian tester approach: Stewart 2011 JET, Nonmanipulable Bayesian testing.
Relation Between Calibration and Learning

Kalai, Lehrer, and Smorodinsky (1999 GEB): equivalence between different notions
of merging and of calibration. (Will make more sense later on.)

Olszewski (2015 Ch), Calibration and Expert Testing: comprehensive survey on
calibration.
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Overview

3. Calibration

— Calibration and Learning in Games



Learning in Games

Convergence issues of the learning in games:

Generalised FP: if converge, asymptotic behaviour is Nash-like; but convergence
not assured.

Similar issues with replicator dynamic and other models.

Foster and Vohra (1997 GEB): different learning basis — calibration — yields different
solution concept — correlated equilibrium.
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Correlated Equilibrium

Players I. Actions A;; A = x;A;. Stage Payoffs u; : A — R.

Correlated Equilibrium: p € A(4) : 3,  p(a;, a-)(ui(a; a-) — ui(aj,a—;)) >0,
Vi€ l,Va,al €A

Correlated e-Equilibrium: p € A(A) : 3=, p(a;, a-)(u;(a;,a-) — ui(aj,a-)) > ¢,
Vi€ I,Vaj,al € A;.

Game repeated t = 1,2, ... Stage payoffs uj(aj, a—jy).

Empirical frequency: p; € A(A) s.t. py(a) = %ZZST‘I{SZ:G)'
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Calibrated Learning = Correlated Equilibrium

{ Theorem 1 (Foster and Vohra 1997 GEB)

Suppose each player uses a calibrated forecasting scheme (on arbitrarily fine parti-
tions) and in each t plays myopic best reply to their forecast (fixed tie-breaking). Then
empirical frequency of play p; € A(A) converges to set of correlated equilibria of stage

game.
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Calibrated Learning = Correlated Equilibrium

{ Theorem 1 (Foster and Vohra 1997 GEB)

Suppose each player uses a calibrated forecasting scheme (on arbitrarily fine parti-
tions) and in each t plays myopic best reply to their forecast (fixed tie-breaking). Then
empirical frequency of play p; € A(A) converges to set of correlated equilibria of stage

game.

Idea

Take player i's forecasts as signal.
In the limit, conditional on forecast, joint distribution of opponents coincides with fore-

cast.
Best-response to forecast means no profitable deviation conditional on signal.
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Calibrated Learning = Correlated Equilibrium

{ Theorem 1 (Foster and Vohra 1997 GEB)

Suppose each player uses a calibrated forecasting scheme (on arbitrarily fine parti-
tions) and in each t plays myopic best reply to their forecast (fixed tie-breaking). Then
empirical frequency of play p; € A(A) converges to set of correlated equilibria of stage

game.

Meaning of calibration: whenever you forecast p, reality looks like p on that
subsequence.

Behavioural content: minimal discipline on beliefs + myopic optimality =— CE.

Internal vs external regret: no internal regret also leads to CE.

Design/selection: by designing calibrated grids, any target ¢ can be attained.
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Attainability of Any Correlated Equilibrium

Theorem 2 (Foster and Vohra 1997 GEB)

For any correlated equilibrium, there exist calibrated forecasts and myopic best replies
such that empirical frequency of play p: € A(A) converges to that correlated equilib-
rium.
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Attainability of Any Correlated Equilibrium

Theorem 2 (Foster and Vohra 1997 GEB)

For any correlated equilibrium, there exist calibrated forecasts and myopic best replies

such that empirical frequency of play p: € A(A) converges to that correlated equilib-
rium.

Idea

Construct partitions and representatives matching correlated equilibrium conditionals;
calibrate to them.

Best replies implement the recommended supports; empirical play tracks correlated
equilibrium.
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Overview

4. Adaptive Algorithms



Learning Dynamics

Actions: A;, A = x;A. Ut A — R. Iplayers. X CR™ convex; X = x;A; or X = x;A(A)).
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Learning Dynamics

Actions: A;, A = x;A. Ut A — R. Iplayers. X CR™ convex; X = x;A; or X = x;A(A)).

Learning dynamic: X; = F(x; u); X; = F;(x;u); F € C".
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Learning Dynamics

Actions: A;, A = x;A. Ut A — R. Iplayers. X CR™ convex; X = x;A; or X = x;A(A)).
Learning dynamic: X; = F(x; u); X; = F;(x;u); F € C".

Uncoupled dynamics: %; only depends on x and u;, not on others’ payoffs; x; = Fi(x; u;).
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Learning Dynamics

Actions: A;, A = x;A. Ut A — R. Iplayers. X CR™ convex; X = x;A; or X = x;A(A)).
Learning dynamic: X; = F(x; u); X; = F;(x;u); F € C".
Uncoupled dynamics: %; only depends on x and u;, not on others’ payoffs; x; = Fi(x; u;).

U C R” has unique NE property if Vu € U, (I, A, u) has unique NE.
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Learning Dynamics

Actions: A;, A = x;A. Ut A — R. Iplayers. X CR™ convex; X = x;A; or X = x;A(A)).
Learning dynamic: X; = F(x; u); X; = F;(x;u); F € C".

Uncoupled dynamics: %; only depends on x and u;, not on others’ payoffs; x; = Fi(x; u;).
U C R” has unique NE property if Vu € U, (I, A, u) has unique NE.

F is Nash-convergent for ¢/ if Vu € U, the learning dynamics always converges to NE,
i.e, F(x*;u) = 0 forany NE x* and limy_,oc X; = x* for any xq.
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Learning Dynamics

Actions: A;, A = x;A. Ut A — R. Iplayers. X CR™ convex; X = x;A; or X = x;A(A)).
Learning dynamic: X; = F(x; u); X; = F;(x;u); F € C".

Uncoupled dynamics: %; only depends on x and u;, not on others’ payoffs; x; = Fi(x; u;).
U C R” has unique NE property if Vu € U, (I, A, u) has unique NE.

F is Nash-convergent for ¢/ if Vu € U, the learning dynamics always converges to NE,
i.e, F(x*;u) = 0 forany NE x* and limy_,oc X; = x* for any xq.

Theorem (Hart and Mas-Colell 2003 AER)

Jug such that for any U containing a neighbourhood of ug, no uncoupled dynamics is
Nash-convergent for ¢/. Furthermore, there is U containing a neighbourhood of ug s.t.
U has unique NE property.
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Learning Dynamics

Actions: A;, A = x;A. Ut A — R. Iplayers. X CR™ convex; X = x;A; or X = x;A(A)).
Learning dynamic: X; = F(x; u); X; = F;(x;u); F € C".

Uncoupled dynamics: %; only depends on x and u;, not on others’ payoffs; x; = Fi(x; u;).
U C R” has unique NE property if Vu € U, (I, A, u) has unique NE.

F is Nash-convergent for ¢/ if Vu € U, the learning dynamics always converges to NE,
i.e, F(x*;u) = 0 forany NE x* and limy_,oc X; = x* for any xq.

Theorem (Hart and Mas-Colell 2003 AER)

Jug such that for any U containing a neighbourhood of ug, no uncoupled dynamics is
Nash-convergent for ¢/. Furthermore, there is U containing a neighbourhood of ug s.t.
U has unique NE property.

E.g., ug is game for which FP doesn’t work (Jordan 1993 GEB).
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Uncoupled Dynamics

Theorem (Hart and Mas-Colell 2003 AER)

Jug such that for any U containing a neighbourhood of ug, no uncoupled dynamics is
Nash-convergent for . Furthermore, there is &/ containing a neighbourhood of ug s.t.
U has unique NE property.
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Uncoupled Dynamics

Theorem (Hart and Mas-Colell 2003 AER)

Jug such that for any U containing a neighbourhood of ug, no uncoupled dynamics is
Nash-convergent for . Furthermore, there is &/ containing a neighbourhood of ug s.t.
U has unique NE property.

J uncoupled dynamics guaranteeing NE convergence for some families of games (e.g.
SFP for zero-sum, potential games, supermodular games, etc).
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Uncoupled Dynamics

Theorem (Hart and Mas-Colell 2003 AER)

Jug such that for any U containing a neighbourhood of ug, no uncoupled dynamics is
Nash-convergent for . Furthermore, there is U containing a neighbourhood of ug s.t.
U has unique NE property.

J uncoupled dynamics guaranteeing NE convergence for some families of games (e.g.
SFP for zero-sum, potential games, supermodular games, etc).

3 uncoupled dynamics that are most of the time close to NE, but not Nash-convergent:
exit infinitely often any neighborhood of NE (Foster and Young 2003 GEB).

Smooth calibrated learning dynamics gets (1 — €)-close to e-NE. (Foster and Hart
2018 GEB, Theorem 15)

Calibration + &-BR gets e-NE. (Foster and Hart 2021 JPE, Theorem 13)
Both are uncoupled dynamics.
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Learning (Correlated) Equilibria (bis)

Correlated Equilibria:
Nash equilibrium of game with signals.
Epistemic foundations (Aumann 1974 JMathE; 1987 Ecta).
Available correlating signals may simply make their way into strategic behaviour.

Hart and Mas-Colell (2000 Ecta): simple learning procedure that converges to CE a.s.
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Correlated Equilibrium

Players I. Actions A;; A = x;A;. Stage Payoffs u; : A — R.

Correlated Equilibrium: p € A(4) : 3,  p(a;, a-)(ui(a; a-) — ui(aj,a—;)) >0,
Vi€ l,Va,al €A

Correlated e-Equilibrium: p € A(A) : 3=, p(a;, a-)(u;(a;,a-) — ui(aj,a-)) > ¢,
Vi€ I,Vaj,al € A;.

Game repeated t = 1,2, ... Stage payoffs uj(aj, a—jy).

Empirical frequency: p; € A(A) s.t. py(a) = %ZZST‘I{SZ:G)'
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Regret Matching
At time t consider counterfactual play: replacing past play of &; with a;.

wi(@,a;) = ui(ai, a—;y) if aj; = &;; otherwise w;4(8;,a)) = ui(al, a-jy) if aj¢ 7 ;.
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Regret Matching

At time t consider counterfactual play: replacing past play of &; with a;.

wi(@,a;) = ui(ai, a—;y) if aj; = &;; otherwise w;4(8;,a)) = ui(al, a-jy) if aj¢ 7 ;.

Average Payoff Difference: d;(3;,a;) := % Z [Wie(@,a) — uiag)] -
<t

Average Regret: 1;(3;,a)) = d;¢(8;,a)".
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Regret Matching
At time t consider counterfactual play: replacing past play of &; with a;.
wi(@,a;) = ui(ai, a—;y) if aj; = &;; otherwise w;4(8;,a)) = ui(al, a-jy) if aj¢ 7 ;.
Average Payoff Difference: d;(3;,a;) := % Z [Wie(@,a) — uiag)] -
o<t
Average Regret: 1;(3;,a)) = d;¢(8;,a)".
Regret Matching: Adjust behaviour more toward actions that regret not having taken:

Switch next period to different action with probability proportional to regret for that
action, i.e., increase in payoff had such change always been made in the past.

Miga(@) = 3t @) Va 7 @i and Ajua(@) = 1= g, A (@)
N > 2[|uj|c |Ajl.

n: measure of inertia; highern = lower switching probability.
Very behavioural strategy.
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Regret Matching
At time t consider counterfactual play: replacing past play of &; with a;.
wi(@,a;) = ui(ai, a—;y) if aj; = &;; otherwise w;4(8;,a)) = ui(al, a-jy) if aj¢ 7 ;.
Average Payoff Difference: d;(3;,a;) := % Z [Wie(@,a) — uiag)] -
o<t
Average Regret: 1;(3;,a)) = d;¢(8;,a)".
Regret Matching: Adjust behaviour more toward actions that regret not having taken:

Switch next period to different action with probability proportional to regret for that
action, i.e., increase in payoff had such change always been made in the past.

Miga(@) = 3t @) Va 7 @i and Ajua(@) = 1= g, A (@)
N > 2[|uj|c |Ajl.

n: measure of inertia; highern = lower switching probability.
Very behavioural strategy.

Theorem (Hart and Mas-Colell 2000 Ecta)

If all players play according to regret matching, empirical play frequencies converge to
set of CE of stage game a.s.
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Regret Matching Implies CE

Remark
Converge to regret below ¢ iff converge to e-CE.

Proof

For converging py, lim sup;_, o, 1i1(&,a)) < € Vi, &;,a;, if and only if
lim Sup;_ o0 /t(al' 0= Za pi(&i,a-)(ui(aia-j) — ui(8i.a-) <& Via,a;.
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Regret Matching Implies CE

Theorem (Hart and Mas-Colell 2000 Ecta)

If all players play according to regret matching, empirical play frequencies converge to
set of CE of stage game a.s.

Proof via straight up applying Blackwell's approachability with payoff vector
Vi(8)(81&1) = (11g -3 lui(@1.a-) — uiEra-)D); ., € RAT
Speed of convergence: E[rj;(4;,a;)] < Kt (0(t™V?)).
Can't do better with stationary mixed strategies (errors of order t~ 2 by CLT).
P(p;ise—CE Vt>T) >1-8exp(-8T), where & = 8(¢). (Large deviation result)
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Regret Matching Implies CE

Theorem (Hart and Mas-Colell 2000 Ecta)

If all players play according to regret matching, empirical play frequencies converge to
set of CE of stage game a.s.

Can extend result to case in which game is not known and others’ choices not
observed. Only observe uj (= uj(ajt, a-j1)).

Replace d;;(&;,a;) with d;;(a;,a)) := 1 [Zegt:a,,,:a, gjj—gguw} -1 [Zegt:a,,f:é, u,‘e}
See Hart and Mas-Colell (2000 Ecta) for details.

If Xie+1(@)) = f(rjs(ajt, @), for f Lipschitz continuous and sign-preserving
(x> ()0 = f(x) >> (=) 0), convergence to CE goes through (Cahn 2004 IJGT;
Hart 2005 Ecta).
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Uncoupled Learning Implies CE

Theorem (Hart and Mas-Colell 2000 Ecta)

If all players play according to regret matching, empirical play frequencies converge to
set of CE of stage game a.s.

It is thus interesting that Nash equilibrium, a notion that does not predicate coor-
dinated behavior, cannot be guaranteed to be reached in an uncoupled way, while
correlated equilibrium, a notion based on coordination, can. (Hart and Mas-Colell
2003 AER)

‘Conservation Coordination Law’ for game dynamics: some form of “coordination” must
be present, either in the limit static equilibrium concept (such as correlated
equilibrium) or in the dynamic leading to it (such as Nash equilibrium dynamics).
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